Reactive Energy Conversion Formulas

Complete formulas for converting between different reactive energy units including VARh, kVARh, MVARh, and related AC electrical energy calculations.

๐Ÿ”‹ Basic Reactive Energy Unit Conversions

Standard Unit Conversions

VARh โ†” kVARh

Example: 45,000 VARh
45,000 VARh = 45 kVARh

kVARh โ†” MVARh

Example: 8,500 kVARh
8,500 kVARh = 8.5 MVARh

VARh โ†” MVARh

Example: 12,000,000 VARh
12,000,000 VARh = 12 MVARh

Reactive Energy Calculation

From Reactive Power and Time

25 kVAR for 8 hours
In VARh: 200 ร— 1000 = 200,000 VARh
Reactive energy: 200 kVARh

Average Reactive Power

1,500 kVARh over 30 days
Time period: 30 ร— 24 = 720 hours
Average reactive power: 2.08 kVAR

๐Ÿ“ Energy Triangle and Relationships

Energy Components

From Apparent and Real Energy

E_S = 1,000 kVAh, E_P = 800 kWh
Reactive energy: 600 kVARh

From Power Factor

E_P = 800 kWh, PF = 0.8
ฯ† = arccos(0.8) = 36.87ยฐ
Reactive energy: 600 kVARh

Monthly Energy Calculations

Load Profile Integration

Variable reactive load over time
Day shift (8h): 50 kVAR average
Evening (4h): 30 kVAR average
Night (12h): 10 kVAR average
Daily: (50ร—8) + (30ร—4) + (10ร—12) = 640 kVARh
Monthly: 640 ร— 30 = 19,200 kVARh

Peak vs Off-Peak Energy

Time-of-use reactive energy
Peak hours (6h): 75 kVAR ร— 6h ร— 22 days = 9,900 kVARh
Off-peak (18h): 35 kVAR ร— 18h ร— 22 days = 13,860 kVARh
Weekends (48h): 25 kVAR ร— 48h ร— 8 days = 9,600 kVARh
Total monthly: 33,360 kVARh

๐Ÿ’ฐ Utility Billing and Reactive Energy

Customer TypekVARh/monthkWh/monthPower FactorVAR/kW Ratio
Residential1501,0000.980.15
Small Commercial2,4008,0000.950.30
Office Building18,00050,0000.940.36
Manufacturing120,000200,0000.850.60
Steel Mill2,500,0004,000,0000.780.63
Data Center45,000150,0000.950.30

๐Ÿ“Š Reactive Energy Metering and Measurement

Electronic Energy Meters

Four-Quadrant Metering

Directional reactive energy measurement
Q1: +kWh, +kVARh (motoring, inductive)
Q2: -kWh, +kVARh (generating, inductive)
Q3: -kWh, -kVARh (generating, capacitive)
Q4: +kWh, -kVARh (motoring, capacitive)
Import/export tracking for each quadrant

Instantaneous Reactive Power

Digital signal processing approach
Voltage: v(t) = 170 sin(ฯ‰t)
Current: i(t) = 10 sin(ฯ‰t - 36.87ยฐ)
Reactive power: q = 850 sinยฒ(ฯ‰t) VAR
Average: Q = 425 VAR
Integration over billing period

Billing Calculations

Reactive Energy Charges

Industrial customer billing
Monthly kVARh: 85,000
Free allowance: 40% of kWh = 0.4 ร— 150,000 = 60,000
Billable kVARh: 85,000 - 60,000 = 25,000
Rate: $0.008/kVARh
Monthly charge: $200

Power Factor Penalty Alternative

Some utilities use PF penalty instead
Peak demand: 500 kW
Power factor: 0.8
Penalty factor: (0.9/0.8 - 1) = 0.125
Penalty demand: 500 ร— 0.125 = 62.5 kW
Extra charge: 62.5 ร— $15 = $938/month

โฐ Time-of-Use Reactive Energy Calculations

Peak Period Analysis

Summer Peak Reactive Load

Peak hours: 1 PM - 6 PM weekdays
HVAC load dominates: 0.82 power factor
Average reactive power: 150 kVAR
Peak season (Jun-Sep): 4 months
Peak days: 22 days/month ร— 4 = 88 days
Peak energy: 150 ร— 5 ร— 88 = 66,000 kVARh
Summer peak reactive energy: 66,000 kVARh

Off-Peak Optimization

Off-peak hours: 6 PM - 1 PM next day
Reduced HVAC load: 0.88 power factor
Process loads dominant: motors at 0.85 PF
Average reactive power: 85 kVAR
Off-peak energy: 85 ร— 20 ร— 88 = 149,600 kVARh
Opportunity for capacitor switching

Capacitor Control Strategy

Automatic Switching Schedule

Base capacitors: 50 kVAR (always on)
Step 1: 25 kVAR (8 AM - 10 PM)
Step 2: 25 kVAR (10 AM - 8 PM)
Step 3: 50 kVAR (12 PM - 6 PM peak)
Total available: 150 kVAR compensation
Reduces peak reactive demand by 80%

Energy Savings Calculation

Without capacitors: 66,000 kVARh peak
With 100 kVAR correction during peak:
Residual reactive: 50 kVAR
Peak energy with caps: 50 ร— 5 ร— 88 = 22,000 kVARh
Reduction: 66,000 - 22,000 = 44,000 kVARh
Savings: 67% reduction in peak reactive energy