Octal to Hexadecimal Converter

Convert octal numbers to hexadecimal with step-by-step explanations and examples.

8
16
8

Octal to Hexadecimal Converter

Octal (Base-8)

Valid characters: 01234567

Hexadecimal (Base-16)
Result will appear here

Octal to Hexadecimal Conversion

Conversion Method:

Octal to Hexadecimal: Via binary conversion (octal→binary→hex)

Process:

  1. Convert each octal digit to 3 binary digits
  2. Group the combined binary digits into groups of 4
  3. Convert each 4-bit group to hexadecimal

Examples with Step-by-Step Solutions

Octal ↔ Hexadecimal Reference

Common conversions via binary intermediate

Octal → Binary → Hex
1₈001₂1₁₆
2₈010₂2₁₆
3₈011₂3₁₆
4₈100₂4₁₆
5₈101₂5₁₆
6₈110₂6₁₆
7₈111₂7₁₆
10₈001000₂8₁₆
12₈001010₂A₁₆
17₈001111₂F₁₆
Hex → Binary → Octal
1₁₆0001₂1₈
2₁₆0010₂2₈
3₁₆0011₂3₈
4₁₆0100₂4₈
5₁₆0101₂5₈
6₁₆0110₂6₈
7₁₆0111₂7₈
8₁₆1000₂10₈
A₁₆1010₂12₈
F₁₆1111₂17₈

Example 1:

(123)8
=
(53)16
Step-by-Step Solution:
Converting 123₍8₎ to base 16:
Step 1: Convert octal to binary first
(Each octal digit = 3 binary digits)
1₈ = 001₂
2₈ = 010₂
3₈ = 011₂
Combined binary: 001010011
Step 2: Group binary digits in groups of 4 for hexadecimal
Pad with leading zeros: 001010011 → 000001010011
Grouped: 0000 | 0101 | 0011
0000₂ = 0₁₀ = 0₁₆
0101₂ = 5₁₀ = 5₁₆
0011₂ = 3₁₀ = 3₁₆
Therefore: 123₈ = 053₁₆

Example 2:

(777)8
=
(1FF)16
Step-by-Step Solution:
Converting 777₍8₎ to base 16:
Step 1: Convert octal to binary first
(Each octal digit = 3 binary digits)
7₈ = 111₂
7₈ = 111₂
7₈ = 111₂
Combined binary: 111111111
Step 2: Group binary digits in groups of 4 for hexadecimal
Pad with leading zeros: 111111111 → 000111111111
Grouped: 0001 | 1111 | 1111
0001₂ = 1₁₀ = 1₁₆
1111₂ = 15₁₀ = F₁₆
1111₂ = 15₁₀ = F₁₆
Therefore: 777₈ = 1FF₁₆

Example 3:

(456)8
=
(12E)16
Step-by-Step Solution:
Converting 456₍8₎ to base 16:
Step 1: Convert octal to binary first
(Each octal digit = 3 binary digits)
4₈ = 100₂
5₈ = 101₂
6₈ = 110₂
Combined binary: 100101110
Step 2: Group binary digits in groups of 4 for hexadecimal
Pad with leading zeros: 100101110 → 000100101110
Grouped: 0001 | 0010 | 1110
0001₂ = 1₁₀ = 1₁₆
0010₂ = 2₁₀ = 2₁₆
1110₂ = 14₁₀ = E₁₆
Therefore: 456₈ = 12E₁₆

Example 4:

(234)8
=
(9C)16
Step-by-Step Solution:
Converting 234₍8₎ to base 16:
Step 1: Convert octal to binary first
(Each octal digit = 3 binary digits)
2₈ = 010₂
3₈ = 011₂
4₈ = 100₂
Combined binary: 010011100
Step 2: Group binary digits in groups of 4 for hexadecimal
Pad with leading zeros: 010011100 → 000010011100
Grouped: 0000 | 1001 | 1100
0000₂ = 0₁₀ = 0₁₆
1001₂ = 9₁₀ = 9₁₆
1100₂ = 12₁₀ = C₁₆
Therefore: 234₈ = 09C₁₆