Octal to Binary Converter

Convert octal numbers to binary with step-by-step explanations and examples.

8
01
8

Octal to Binary Converter

Octal (Base-8)

Valid characters: 01234567

Binary (Base-2)
Result will appear here

Octal to Binary Conversion

Conversion Method:

Octal to Binary: Direct expansion method (each digit to 3 binary)

Process:

  1. Convert each octal digit to its 3-digit binary equivalent
  2. Combine all binary groups
  3. Remove leading zeros if necessary

Examples with Step-by-Step Solutions

Octal to Binary Conversion Table

Each octal digit converts to 3 binary digits

0₈
000₂
1₈
001₂
2₈
010₂
3₈
011₂
4₈
100₂
5₈
101₂
6₈
110₂
7₈
111₂

Example 1:

(12)8
=
(1010)2
Step-by-Step Solution:
Converting 12₍8₎ to base 2:
Step 1: Convert each octal digit to 3 binary digits
(Since 8 = 2³, each octal digit = 3 binary digits)
1₈ = 1₁₀ = 0×2^2 + 0×2^1 + 1×2^0 = 001₂
2₈ = 2₁₀ = 0×2^2 + 1×2^1 + 0×2^0 = 010₂
Step 2: Combine all binary groups:
001 | 010 = 001010
Remove leading zeros: 1010
Therefore: 12₈ = 1010₂

Example 2:

(456)8
=
(100101110)2
Step-by-Step Solution:
Converting 456₍8₎ to base 2:
Step 1: Convert each octal digit to 3 binary digits
(Since 8 = 2³, each octal digit = 3 binary digits)
4₈ = 4₁₀ = 1×2^2 + 0×2^1 + 0×2^0 = 100₂
5₈ = 5₁₀ = 1×2^2 + 0×2^1 + 1×2^0 = 101₂
6₈ = 6₁₀ = 1×2^2 + 1×2^1 + 0×2^0 = 110₂
Step 2: Combine all binary groups:
100 | 101 | 110 = 100101110
Therefore: 456₈ = 100101110₂

Example 3:

(777)8
=
(111111111)2
Step-by-Step Solution:
Converting 777₍8₎ to base 2:
Step 1: Convert each octal digit to 3 binary digits
(Since 8 = 2³, each octal digit = 3 binary digits)
7₈ = 7₁₀ = 1×2^2 + 1×2^1 + 1×2^0 = 111₂
7₈ = 7₁₀ = 1×2^2 + 1×2^1 + 1×2^0 = 111₂
7₈ = 7₁₀ = 1×2^2 + 1×2^1 + 1×2^0 = 111₂
Step 2: Combine all binary groups:
111 | 111 | 111 = 111111111
Therefore: 777₈ = 111111111₂

Example 4:

(123)8
=
(1010011)2
Step-by-Step Solution:
Converting 123₍8₎ to base 2:
Step 1: Convert each octal digit to 3 binary digits
(Since 8 = 2³, each octal digit = 3 binary digits)
1₈ = 1₁₀ = 0×2^2 + 0×2^1 + 1×2^0 = 001₂
2₈ = 2₁₀ = 0×2^2 + 1×2^1 + 0×2^0 = 010₂
3₈ = 3₁₀ = 0×2^2 + 1×2^1 + 1×2^0 = 011₂
Step 2: Combine all binary groups:
001 | 010 | 011 = 001010011
Remove leading zeros: 1010011
Therefore: 123₈ = 1010011₂