Binary to Hexadecimal Converter

Convert binary numbers to hexadecimal with step-by-step explanations and examples.

01
16
01

Binary to Hexadecimal Converter

Binary (Base-2)

Valid characters: 01

Hexadecimal (Base-16)
Result will appear here

Binary to Hexadecimal Conversion

Conversion Method:

Binary to Hexadecimal: Direct grouping method (group by 4 digits)

Process:

  1. Group binary digits from right to left in groups of 4
  2. Convert each 4-digit group to its hexadecimal equivalent (0-F)
  3. Combine the hex digits to get the final result

Why this works: 2⁴ = 16, so 4 binary digits represent exactly 1 hex digit

Examples with Step-by-Step Solutions

Binary to Hexadecimal Conversion Table

Each group of 4 binary digits converts to 1 hexadecimal digit

0000₂
0₁₆
0001₂
1₁₆
0010₂
2₁₆
0011₂
3₁₆
0100₂
4₁₆
0101₂
5₁₆
0110₂
6₁₆
0111₂
7₁₆
1000₂
8₁₆
1001₂
9₁₆
1010₂
A₁₆
1011₂
B₁₆
1100₂
C₁₆
1101₂
D₁₆
1110₂
E₁₆
1111₂
F₁₆

Example 1:

(1010)2
=
(A)16
Step-by-Step Solution:
Converting 1010₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1010
Step 2: Convert each group to hexadecimal:
1010₂ = 1 × 2³ + 0 × 2² + 1 × 2¹ + 0 × 2⁰ = 8 + 0 + 2 + 0 = 10₁₀ = A₁₆
Therefore: 1010₂ = A₁₆

Example 2:

(11011101)2
=
(DD)16
Step-by-Step Solution:
Converting 11011101₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1101 | 1101
Step 2: Convert each group to hexadecimal:
1101₂ = 1 × 2³ + 1 × 2² + 0 × 2¹ + 1 × 2⁰ = 8 + 4 + 0 + 1 = 13₁₀ = D₁₆
1101₂ = 1 × 2³ + 1 × 2² + 0 × 2¹ + 1 × 2⁰ = 8 + 4 + 0 + 1 = 13₁₀ = D₁₆
Therefore: 11011101₂ = DD₁₆

Example 3:

(10110110)2
=
(B6)16
Step-by-Step Solution:
Converting 10110110₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1011 | 0110
Step 2: Convert each group to hexadecimal:
1011₂ = 1 × 2³ + 0 × 2² + 1 × 2¹ + 1 × 2⁰ = 8 + 0 + 2 + 1 = 11₁₀ = B₁₆
0110₂ = 0 × 2³ + 1 × 2² + 1 × 2¹ + 0 × 2⁰ = 0 + 4 + 2 + 0 = 6₁₀ = 6₁₆
Therefore: 10110110₂ = B6₁₆

Example 4:

(11110000)2
=
(F0)16
Step-by-Step Solution:
Converting 11110000₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1111 | 0000
Step 2: Convert each group to hexadecimal:
1111₂ = 1 × 2³ + 1 × 2² + 1 × 2¹ + 1 × 2⁰ = 8 + 4 + 2 + 1 = 15₁₀ = F₁₆
0000₂ = 0 × 2³ + 0 × 2² + 0 × 2¹ + 0 × 2⁰ = 0 + 0 + 0 + 0 = 0₁₀ = 0₁₆
Therefore: 11110000₂ = F0₁₆