Binary to Hexadecimal Converter
Convert binary numbers to hexadecimal with step-by-step explanations and examples.
01
16
01
Binary to Hexadecimal Converter
Binary (Base-2)
Valid characters: 01
Hexadecimal (Base-16)
Result will appear here
Binary to Hexadecimal Conversion
Conversion Method:
Binary to Hexadecimal: Direct grouping method (group by 4 digits)
Process:
- Group binary digits from right to left in groups of 4
- Convert each 4-digit group to its hexadecimal equivalent (0-F)
- Combine the hex digits to get the final result
Why this works: 2⁴ = 16, so 4 binary digits represent exactly 1 hex digit
Examples with Step-by-Step Solutions
Binary to Hexadecimal Conversion Table
Each group of 4 binary digits converts to 1 hexadecimal digit
0000₂
↓
0₁₆
0001₂
↓
1₁₆
0010₂
↓
2₁₆
0011₂
↓
3₁₆
0100₂
↓
4₁₆
0101₂
↓
5₁₆
0110₂
↓
6₁₆
0111₂
↓
7₁₆
1000₂
↓
8₁₆
1001₂
↓
9₁₆
1010₂
↓
A₁₆
1011₂
↓
B₁₆
1100₂
↓
C₁₆
1101₂
↓
D₁₆
1110₂
↓
E₁₆
1111₂
↓
F₁₆
Example 1:
(1010)2
=
(A)16
Step-by-Step Solution:
Converting 1010₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1010
Step 2: Convert each group to hexadecimal:
1010₂ = 1 × 2³ + 0 × 2² + 1 × 2¹ + 0 × 2⁰ = 8 + 0 + 2 + 0 = 10₁₀ = A₁₆
Therefore: 1010₂ = A₁₆
Example 2:
(11011101)2
=
(DD)16
Step-by-Step Solution:
Converting 11011101₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1101 | 1101
Step 2: Convert each group to hexadecimal:
1101₂ = 1 × 2³ + 1 × 2² + 0 × 2¹ + 1 × 2⁰ = 8 + 4 + 0 + 1 = 13₁₀ = D₁₆
1101₂ = 1 × 2³ + 1 × 2² + 0 × 2¹ + 1 × 2⁰ = 8 + 4 + 0 + 1 = 13₁₀ = D₁₆
Therefore: 11011101₂ = DD₁₆
Example 3:
(10110110)2
=
(B6)16
Step-by-Step Solution:
Converting 10110110₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1011 | 0110
Step 2: Convert each group to hexadecimal:
1011₂ = 1 × 2³ + 0 × 2² + 1 × 2¹ + 1 × 2⁰ = 8 + 0 + 2 + 1 = 11₁₀ = B₁₆
0110₂ = 0 × 2³ + 1 × 2² + 1 × 2¹ + 0 × 2⁰ = 0 + 4 + 2 + 0 = 6₁₀ = 6₁₆
Therefore: 10110110₂ = B6₁₆
Example 4:
(11110000)2
=
(F0)16
Step-by-Step Solution:
Converting 11110000₍2₎ to base 16:
Step 1: Group binary digits from right to left in groups of 4
(Since 2⁴ = 16, each group of 4 binary digits = 1 hexadecimal digit)
Grouped: 1111 | 0000
Step 2: Convert each group to hexadecimal:
1111₂ = 1 × 2³ + 1 × 2² + 1 × 2¹ + 1 × 2⁰ = 8 + 4 + 2 + 1 = 15₁₀ = F₁₆
0000₂ = 0 × 2³ + 0 × 2² + 0 × 2¹ + 0 × 2⁰ = 0 + 0 + 0 + 0 = 0₁₀ = 0₁₆
Therefore: 11110000₂ = F0₁₆